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Abstract

Freezing in a one-dimensional region induced by evaporative cooling is investigated. Semi-analytic solutions in the

limit of low mass transfer rates and Stefan numbers are presented. An nth order polynomial is used to express the vapor

pressure function in terms of the evaporating ¯uid layer temperature. The freezing of a slab of calcium chloride

hexahydrate subject to evaporative cooling of a thin layer of water into air is used to illustrate the utility of the model.

Results show the existence of a transition region, depending upon the relative humidity and Biot number, where the

¯uid layer dry-out time competes with the freeze time of the slab. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Evaporative cooling has been traditionally used in

thermal and nuclear power plants as well as in com-

mercial and industrial HVAC systems where evaporative

cooling towers reject cycle waste heat from hot water

¯owing from condensers. In direct-exchange cooling

applications, it is a cost-e�ective means of delivering

comfortable, conditioned air by absorbing sensible heat

from hot air through the evaporation of water. Evap-

orative cooling has also found applications in such areas

as the drying of gelcast ceramics [1], shrinkage of foods

due to moisture removal [2], cryogenic freezing of am-

monia in supersonic ¯ow [3], thermal bending in preci-

sion machine tools [4], cooling of high power density

electronic devices [5,6], and numerous other passive, low

energy consumption processes. It can also be applied to

natural gas-assisted air conditioning whereby a phase

change material (PCM) is successively charged by pulsed

natural gas heating and subsequently discharged to

continuously provide evaporative cooling of hot outside

air. In any process, however, evaporative cooling would

have an economic advantage over forced ¯ow cooling

since additional capital equipment (i.e., pumps and

valves) and associated energy expenditure would have to

be considered.

The literature on evaporative cooling, including

fundamentals and applications, is vast and will not be

reviewed here. Some notable studies on evaporative ®lm

and spray cooling, including appropriate references to

the literature therein, include Yan and Lin [7] and

Kachhwaha et al. [8]. However, the application of evap-

orative cooling to solidi®cation processes is scarce at

best. On the other hand, solidi®cation (and melting) of

materials due to isothermal, uniform heat ¯ux, convec-

tive, and radiative boundary conditions are more com-

mon. In fact, a number of investigations have appeared

in the literature on the freezing of slabs, subject to var-

ious types of boundary conditions. Alexiades and Sol-

omon [9] provided an excellent compilation of various

types of melting and freezing studies, with a number of

analytic solutions to one-phase and two-phase one-di-

mensional Stefan-type problems with di�erent types of

boundary conditions (i.e., insulated, isothermal, uniform

¯ux, and convective). Goodling and Khader [10] used an

implicit ®nite di�erence method to solve the problem of

inward solidi®cation of one-dimensional slabs, cylinders,

and spheres subject to convective and radiative cool-

ing at their outer surfaces. An investigation on phase

International Journal of Heat and Mass Transfer 44 (2001) 1161±1170
www.elsevier.com/locate/ijhmt

* Corresponding author. Tel.: +1-504-280-6167; fax: +1-504-

280-5539.

E-mail address: cahall@uno.edu (C.A. Hall III).

0017-9310/01/$ - see front matter Ó 2001 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 1 7 - 9 3 1 0 ( 0 0 ) 0 0 1 5 4 - X



change caused by aerodynamic and radiative cooling (or

heating) was performed by Chung and Yeh [11] for a

one-dimensional slab using BiotÕs variational method

and GoodmanÕs integral method. Both methods re-

quired subsequent numerical integration. The pertur-

bation expansion method was used by Yan and Huang

[12] to obtain solutions for one-dimensional solidi®ca-

tion (or melting) of a slab subject to convective and

radiative cooling (or heating) on one side and an adia-

batic condition on the other. Seeniraj and Bose [13]

provided asymptotic solutions for one-dimensional so-

lidi®cation (and melting) of slabs, cylinders, and spheres

subject to aerodynamic and radiative cooling (or heat-

ing). PrudÕhomme et al. [14] applied the method of

strained coordinates to the inward solidi®cation of slabs,

cylinders, and spheres. With the liquid initially at its

fusion temperature, freezing was induced by: isothermal

cooling, uniform heat ¯ux cooling, or convective cool-

ing. Recently, Hall et al. [15] provided uni®ed semi-an-

alytic solutions for the solidi®cation of slabs, cylinders,

and spheres (with two coalescing freeze fronts) subject to

convective and radiative boundary conditions. There-

fore, to the best of the present authorsÕ knowledge, it

appears that no solutions have been presented in the

literature on the freezing of one-dimensional slabs due to

surface evaporative cooling.

In the present paper, a one-dimensional model of a

solidifying slab subject to evaporative cooling by a thin

liquid layer is presented. With various ®xed dimension-

less parameters such as the slab-thickness-to-initial-

¯uid-layer thickness ratio, Stefan number, modi®ed

Jakob number, Lewis number, ¯uid-layer-to-ambient-

gas molar mass ratio, and material solid-to-¯uid-layer

volumetric heat capacity ratio, the e�ects of parameters

such as relative humidity and Biot number on the dry-

out characteristics of the ¯uid layer and the freeze

characteristics of the slab are determined. An example is

given to illustrate the applicability of the model.

2. Problem formulation

Consider the physical model shown in Fig. 1 of a one-

dimensional region of thickness D undergoing solidi®-

cation. With the material undergoing solidi®cation ini-

Nomenclature

Bi Biot number

c speci®c heat

D thickness of one-dimensional region

D12 binary di�usion coe�cient

g� low-rate mass transfer coe�cient

h� convective heat transfer coe�cient at zero net

mass transfer
�h average heat transfer coe�cient over liquid

layer

hfg latent heat of vaporization

hsf latent heat of fusion

Ja modi®ed Jakob number

k thermal conductivity

Le Lewis number

m vapor mass fraction

M molecular weight or molar mass

_m00 ¯uid layer evaporation ¯ux

_m00� dimensionless ¯uid layer evaporation ¯ux

P pressure

Ste Stefan number

t time

T temperature

X vapor mole fraction

y coordinate location

Y dimensionless coordinate location

Greek symbols

a thermal di�usivity

d solid region thickness

D dimensionless solid region thickness

/ relative humidity

k ¯uid layer thickness

K dimensionless ¯uid layer thickness

h dimensionless temperature

q density

s dimensionless time or Fourier number

Subscripts

atm parameter evaluated at atmospheric conditions

f liquid or ¯uid

g gas

m parameter evaluated at solid±liquid interface

conditions

0 initial value

s solid region

sat parameter evaluated at saturation conditions

1 parameter evaluated at far ®eld conditions

Fig. 1. One-dimensional model for freezing due to an evap-

orating ¯uid layer.

1162 C.A. Hall III, C. Mackie / International Journal of Heat and Mass Transfer 44 (2001) 1161±1170



tially at its fusion temperature, Tm, a thin, stagnant

liquid layer of initial thickness, k0 (� D), and tempera-

ture, Tm, suddenly comes into direct contact with the

molten material, inducing solidi®cation at the material±

liquid layer interface due to evaporative cooling. The

bottom surface of the material is maintained under

adiabatic conditions. Furthermore, it is assumed that the

solid±liquid interface remains planar and sharp, and the

remaining molten layer within the material is maintained

at a uniform temperature of Tm. Therefore, only the

solid region is analyzed, and motion due to density

change upon phase change is not signi®cant (i.e., ql� qs;

no solidi®cation shrinkage). Furthermore, the liquid

layer is exposed to a local ambient gaseous environment

(herein considered a binary mixture), which is main-

tained at a temperature of T1, atmospheric pressure,

Patm, and relative humidity, /. All thermophysical

properties are assumed constant.

The transient one-dimensional temperature distribu-

tion in the materialÕs solidifying region is described by

the heat di�usion equation,

oTs

ot
� as

o2Ts

oy2
�1�

subject to the initial condition,

Ts�y; t � 0� � Tf�t � 0� � Tm; �2�
where as is the thermal di�usivity of the solid and Tf is

the lumped ¯uid (liquid) layer temperature. The corre-

sponding boundary conditions are given by

ks

oTs

oy

����
y�0

� _m00hfg � �h Tf� ÿ T1�; �3�

Ts y� � d� � Tm �4�
and the Stefan condition is expressed as

ks

oTs

oy

����
y�d

� qshsf

dd
dt
: �5�

Eq. (3) is obtained by performing an energy balance on a

di�erential element of ¯uid in the liquid layer, which is

considered lumped with negligible thermal inertia (e.g.,

�qf cfk�dTf=dt is small since the initial ¯uid layer thick-

ness k0 is negligibly small); _m00 is the evaporation ¯ux (or

total mass ¯ow rate per unit area) of the liquid, hfg is

the latent heat of vaporization of the liquid, and �h is the

average convective heat transfer coe�cient over the

liquid layer. In Eq. (5), hsf is the latent heat of fusion of

the material and d is the instantaneous location of the

solid±liquid interface within the material.

In order to account for the evaporating ¯uid layer,

the conservation of ¯uid layer mass requires that

_m00 � ÿqf

dk
dt
; �6�

subject to the initial condition,

k t� � 0� � k0: �7�
Upon introducing the following non-dimensional

parameters:

Y � y
D
; s � t

D2=as

; h � T ÿ T1
Tm ÿ T1

;

D � d
D
; K � k

k0

; _m00� � k0 _m00

qfaf

;

�8�

the resulting equation in the solidi®ed layer transforms

as

ohs

os
� o2hs

oY 2
; �9�

and the initial and boundary conditions transform, ac-

cordingly, as

hs Y ; s� � 0� � hf s� � 0� � 1; �10�

ohs

oY

����
Y�0

� BiLe2=3

Ja
mf� ÿ m1� � Bihf ; �11�

hs�Y � D� � 1; �12�
while the Stefan condition transforms to

ohs

oY

����
Y�D

� 1

Ste
dD
ds
; �13�

where the Biot (Bi), Lewis (Le), modi®ed Jakob (Ja),

and Stefan (Ste) numbers are, respectively, de®ned as

Bi �
�hD
ks

; Le � D12

af

� Pr
Sc
;

Ja � cf Tm ÿ T1� �
hfg

; Ste � cs Tm ÿ T1� �
hsf

; �14�

in which Pr ��vf=af� is the Prandtl number and

Sc ��vf=D12� is the Schmidt number. The non-dimen-

sional conservation of mass for the evaporating ¯uid

layer is written as

ÿ dK
ds
� D

k0

� �
qc� �s
qc� �f

� �
BiLeÿ2=3 mf� ÿ m1�; �15�

with K�s � 0� � 1. It is noted that in Eqs. (14) and (15),

D12 is the binary di�usion coe�cient and mf and m1 are,

respectively, the mass fractions of vapor near the liquid±

gas interface and far away in the free stream. In Eq. (11),

the evaporation ¯ux at low mass transfer rates, de-

scribed by a reduced form of an expression found in [16],

is given by

_m00 � g� mf� ÿ m1�: �16�
In Eq. (16), g� is the low-rate mass transfer coe�cient,

given by the heat and mass transfer analogy [16], i.e.,
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g� � h�

cf

Le2=3 �17�

in which h� is the convective heat transfer coe�cient at

zero net mass transfer, which is approximated as the

average convective heat transfer coe�cient �h. Further-

more, the vapor mass fraction di�erence �mf ÿ m1� is

known as the low-rate mass transfer driving factor,

which results when the vapor mass fraction at the

liquid±gas interface is much less than unity. These vapor

mass fractions can be calculated by

mf � Xf Mf

Xf Mf � 1ÿ Xf� �Mg

� Psat Tf� �
Psat Tf� � � Patm ÿ Psat Tf� �� �Mg=Mf

� Mf

Mg

Psat Tf� �
Patm

�18�
and

m1 � X1Mf

X1Mf � 1ÿ X1� �Mg

� /Psat T1� �
/Psat T1� � � Patm ÿ /Psat T1� �� �Mg=Mf

; �19�

where Mf and Mg are the molecular weights (or molar

masses) of the liquid and gas, respectively, and Xf and

X1 are, respectively, the mole fractions of vapor at the

liquid±gas interface and far away in the free stream.

These mole fractions are calculated by [17]

Xf � Psat Tf� �
Patm

�20�

and

X1 � /Psat T1� �
Patm

; �21�

where Psat(Tf ) is the saturation pressure of the vapor at

the local liquid temperature and Psat(T1) is the satura-

tion pressure of the vapor at the local ambient temper-

ature. The approximate equality in Eq. (18) results from

the assumption that the vapor mole fraction at the

liquid±gas interface is much smaller than unity and the

molecular weights of the liquid and gas are of the same

order of magnitude.

Although saturation property data for various ¯uids

given in the literature appears in tabular form, a poly-

nomial curve-®t allows a convenient algebraic rep-

resentation of these data. In the context of the present

model, analytic or semi-analytic solutions are possible in

the limit of low Stefan numbers.

3. Semi-analytic solution

In order to obtain a semi-analytic solution to the

present problem as formulated, phase change is assumed

to progress in a quasi-steady manner, which is consistent

with the low Stefan number limit. Therefore, the solu-

tion to the quasi-steady form of Eq. (9) is given by

hs Y ; s� � � 1� ÿ hf s� �� Y
D�s� � hf�s�; �22�

which implies that Eqs. (11) and (13), respectively, be-

come

BiLe2=3

Ja
mf� ÿ m1� � Bihf � 1ÿ hf

D
; �23�

1

Ste
Dÿ D0

Ds

� �
� 1ÿ hf

D
; �24�

where a forward di�erence approximation has been

made on the freeze rate term in Eq. (13). Upon substi-

tuting Eqs. (18) and (19) into Eq. (23) and rearranging

terms, the following equation results:

BiLe2=3

Ja
F hf� �
� ÿ G P �sat�0�;/

� �	� Bi
�
� 1

D

�
hf ÿ 1

D
� 0;

�25�
where

F hf� � � Mf

Mg

P �sat hf� � �26�

and the a priori known function G is expressed as

G P �sat�0�;/
� � � /P �sat�0�

/P �sat�0� � 1ÿ /P �sat�0�
� �

Mg=Mf

; �27�

where P �sat�0� is the dimensionless saturation pressure

function evaluated at ambient conditions. Furthermore,

if the function P �sat�hf� in Eq. (26) is assumed to be a

polynomial of degree n, then the ®nal form of Eq. (25) is

expressed as

BiLe2=3

Ja
Mf

Mg

anh
n
f

��
� anÿ1h

nÿ1
f � � � � � a0

�
ÿ G P �sat�0�;/

� ��� Bi
�
� 1

D

�
hf ÿ 1

D
� 0; �28�

which can be solved analytically or numerically once the

order of the polynomial (with associated coe�cients

an; anÿ1; . . . ; a0� is speci®ed. Moreover, Eq. (15) can be

discretized and cast in the following form:

Kn � Knÿ1 ÿ D
k0

� � �qc�s
�qc�f

� �
BiLeÿ2=3 mf� ÿ m1�Ds: �29�

Within the framework of the present formulation, an

expression for the dependent variables D, K, and hf can

be written functionally as

D;K; hf� � � f Bi; Ja; Le; Ste;
Mf

Mg

; P �sat�0�;/; an; anÿ1; . . . a0;

�
D
k0

;
�qc�s
�qc�f

; s

�
: �30�
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4. Solution procedure

The solid±liquid interface is advanced a small incre-

ment from Dn ÿ 1 to Dn; Eq. (28) is then solved for the

¯uid layer temperature, hf
n. The elapsed time, Dsn, in

advancing the interface from Dn ÿ 1 to Dn, corresponding

to hf
n, is determined by solving Eq. (24). The current

time associated with the previous step is calculated using

sn � snÿ1 � Dsn. Eq. (29) is then solved to ®nd the

evaporating ¯uid layer thickness, Kn. This procedure is

repeated until Kn reaches zero or until Dn reaches unity.

5. Results and discussion

In what follows, the solution procedure outlined in

the previous section is illustrated by a practical example.

Consider the freezing of a slab of Calcium Chloride

Hexahydrate (CaCl2 á 6H2O), induced by an evaporating

layer of water into air. The relevant thermophysical

properties of CaCl2 á 6H2O and water are shown in

Table 1. With the molten slab initially at its fusion

temperature (27°C), and with a thin, stagnant layer of

water, also initially at 27°C, that suddenly comes into

contact with the slab, freezing occurs by evaporating the

water into air. The ambient air is maintained at a tem-

perature of 25°C and a pressure of 1 atm. A second-

order polynomial curve-®t of the vapor pressure data for

water in the range of 10°C 6 Tsat6 40°C is used in ob-

taining the present semi-analytic solutions [4]. This sec-

ond-order polynomial is given by Psat�Tsat� � 5T 2
satÿ

50:8Tsat � 1282:1, where Psat is expressed in pascals (Pa)

and Tsat is expressed in degrees Celsius (°C). This curve-

®t results in an error of approximately 1% at 25°C and

about 0.3% at 30°C as compared to the vapor pressure

data compiled in [18]. The corresponding ®xed dimen-

sionless parameters are also shown in Table 1. It should

be pointed out here that the e�ects of supercooling and

phase segregation of the CaCl2 á 6H2O slab are neglected

[9]. Furthermore, the normally dendritic growth of the

CaCl2 á 6H2O freeze front is neglected and the solid±

liquid interface is regarded as sharp since the interface

region is typically very thin [9].

Now consider Eq. (26), where P �sat(hf ) is a second-

order polynomial used in Eq. (28). The generalized so-

lution for the dimensionless ¯uid layer temperature as a

function of material properties and environmental con-

ditions, in the form of various dimensionless parameters,

can be written as

hf � a2

2Ja
Mf

Mg

� �ÿ1 a1

Ja
Mf

Mg

�*8<: �Leÿ2=3 1
h
� BiD� �ÿ1

i�+2

ÿ a2

Ja
Mf

Mg

� �ÿ1 a0

Ja
Mf

Mg

�
ÿG P �sat�0�;/

� �
Ja

ÿLeÿ2=3 BiD� �ÿ1

�9=;
1=2

ÿ a2

2Ja
Mf

Mg

� �ÿ1 a1

Ja
Mf

Mg

�
�Leÿ2=3 1

h
� BiD� �ÿ1

i�
; �31�

where the non-dimensional coe�cients a2, a1, and a0 are

given, respectively, by

a2 � a02 Tm ÿ T1� �2
Patm

; a1 �
2a02T1 � a01
ÿ �

Tm ÿ T1� �
Patm

;

and a0 �
a00 � T1 a02T1 � a01

ÿ �
Patm

�32�

in which a02; a
0
1, and a00 are the actual coe�cients resulting

from a second-order polynomial curve-®t of the vapor

pressure data. Within the context of the present example,

Table 1

Thermophysical properties of calcium chloride hexahydrate [9] and water [18] that are used in the present study

Property CaCl2 á 6H2O Water

q (kg/m3) 1700 (solid) 997a

c (J/kg °C) 2210 (solid) 4188a

k (W/m °C) 1.08 (solid) )
hsf (J/kg) 190,000 )
Tm (°C) 27 )
hfg (J/kg) ) 2,437,560b

Corresponding dimensionless parameters

Le � 1 a0 � 3:096� 10ÿ2

Ja � 3:436� 10ÿ3 a1 � 3:932� 10ÿ3

Ste � 2:319� 10ÿ2 a2 � 1:974� 10ÿ4

�qc�s=�qc�f � 0:9

P �sat�0� � 3:127� 10ÿ2

Mg=Mf � 1:6c

a Evaluated at 25°C.
b Evaluated at 27°C by interpolation.
c Evaluated using Mg �Mair� 28.97 and Mf �Mwater� 18.02.
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these coe�cients are, respectively, 5, )50.8, and 1282.1

as indicated in the aforementioned curve-®t of the vapor

pressure data for water. These numbers are re¯ected in

the coe�cients a2, a1, and a0 shown in equation set (32),

with numerical values listed in Table 1.

5.1. A comparative exercise: the isothermal limit

Consider the solution for the dimensionless ¯uid

layer temperature shown in Eq. (31). In the limit of very

large Biot numbers �Bi!1�, and as a0Mf=Mg ! G, it

can be shown that the dimensionless ¯uid layer tem-

perature approaches zero. As a result, freezing of the

slab is due to that of surface isothermal cooling. In the

present example, a close approximation to isothermal

freezing is achieved as the relative humidity approaches

100% �/! 1�, i.e.,

a0

Mg=Mf

� 1:935� 10ÿ2 and G /� � 1� � 1:977� 10ÿ2:

It is observed that these calculations di�er by approxi-

mately 2%, and as the relative humidity decreases to-

wards zero, the approximation becomes less valid. In

fact, in the isothermal limit, the solutions are indepen-

dent of the relative humidity near saturation conditions

since the vapor pressure of the water near the liquid-gas

interface would approach the vapor pressure of the

water in the free stream. As a result, the mass fraction of

water vapor near the liquid±gas interface approaches

that of the free stream and the potential for mass

transfer collapses to zero.

Shown in Fig. 2 is the temporal progression of the

CaCl2á 6H2O solid±liquid interface in the approximation

to the isothermal limit. Closed-form, quasi-steady solu-

tions for the solid±liquid interface position and surface

temperature for isothermal freezing of a slab are su-

perimposed on the ®gure. These solutions are written in

non-dimensional form from the quasi-steady solutions

found in Alexiades and Solomon [9] in the limit as

Bi!1, i.e.,

D0 �
������������������������������
1

Bi2
� 2 � Ste � s

r
ÿ 1

Bi
!

������������������
2 � Ste � s
p

; �33�

h0f �
1

1� BiD0
! 0: �34�

Eq. (33) converges to the exact Neumann solution as

Bi!1 and when the parameter in the transcendental

equation of NeumannÕs solution is approximated by

�Ste=2�1=2
, which is valid in the limit low Stefan numbers

[9]. These solutions can also be derived from Eqs. (11)

and (13) by setting mf �m1 and subsequently integrat-

ing.

In Fig. 2, excellent agreement can be observed in the

temporal progression of the freeze front location in the

isothermal limit, which is simulated by setting Bi � 1030

and /� 1. The di�erences can be attributed to the

aforementioned 2% di�erence in a0Mf=Mg and G, which

results in a dimensionless ¯uid layer temperature of

approximately 0.072. This e�ectively slows down the

motion of the interface as shown in the ®gure.

5.2. E�ect of relative humidity and ®nite Biot number

In analyzing the simultaneous progression of the

CaCl2 á H2O freeze front and ¯uid layer liquid±gas

interface, the dimensionless parameters contained in

Table 1 remain ®xed. The other dimensionless parameter

that remains ®xed throughout this section is the slab

thickness-to-initial-¯uid-layer thickness ratio, which is

kept at D=k0 � 10. This value is chosen to represent a

lower bound on the allowable thickness ratio in order to

ensure the validity of the lumped capacity analysis of the

¯uid layer. Therefore, for values lower than 10, the

analysis would have to include the ®nite thermal re-

sistance of and, hence, thermal gradients within the ¯uid

layer.

The temporal development of the dimensionless

solid±liquid interface position, ¯uid layer liquid±gas in-

terface position, and dimensionless ¯uid layer tempera-

ture are all shown in Fig. 3. The results shown in this

®gure pertain to the evaporation of water into dry air,

where the relative humidity is zero (/� 0). The Biot

number is held at unity (Bi� 1). Superimposed on this

®gure is the dimensionless freeze front location and di-

mensionless slab surface temperature without evapora-

tive cooling. The ®rst interpretation that can be made is

that when all the other parameters are ®xed, including

Fig. 2. Temporal development of dimensionless solid±liquid

interface position, dimensionless solid±liquid interface position

without ¯uid layer, dimensionless ¯uid layer temperature, and

dimensionless solidi®ed region surface temperature (without

¯uid layer ) in the approximate isothermal limit.
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the Biot number, the case of evaporating water into dry

air results in minimum dry-out time and incomplete

solidi®cation of the slab. The dry-out time is de®ned as

the time necessary for complete evaporation of the ¯uid

layer. In Fig. 3, the dry-out time occurs at approxi-

mately sdry� 6.165, and about 66.8% of the slab thick-

ness is solidi®ed at dry-out. Without evaporative

cooling, the fraction of solidi®ed slab thickness is only

about 13.4% at the same time corresponding to dry-out.

Also, the e�ect of maximum evaporative cooling (/� 0)

reduces the dimensionless ¯uid layer temperature from

approximately hf
0 � 0.8818 (without evaporative cool-

ing) to about hf �)1.292, which indicates cooling below

the ambient air temperature.

Fig. 4 illustrates the e�ect of increasing the relative

humidity to 90%, with all of the same conditions as in

Fig. 3. The ®rst observation is that dry-out does not

occur, as the time for complete solidi®cation of the slab

occurs at approximately sf � 36.9. In fact, about 13.21%

of the ¯uid layer remains upon complete solidi®cation.

This is due simply to the fact that the much higher rel-

ative humidity slows down signi®cantly the evaporation

process as compared to the solidi®cation process. In the

absence of evaporation, only about 64.67% of the slab is

solidi®ed at the time corresponding to complete solidi-

®cation of the slab with evaporative cooling. Further-

more, evaporative cooling reduces the ¯uid layer

temperature from approximately h0f � 0:6073 (without

evaporative cooling) to about hf � 0.1993.

The e�ect of relative humidity, ranging from 50% to

90%, on the temporal progression of the ratio of solid-

i®ed thickness with evaporative cooling to solidi®ed

thickness without evaporative cooling is shown in Fig. 5,

with the Biot number ®xed at unity. In the ®gure, a solid

thickness ratio decrease, ranging from approximately

4.49 at 50% relative humidity down to about 2.18 at 90%

relative humidity, can be observed at early times. The

characteristic decrease in thickness ratio as time pro-

gresses (for all representative relative humidities) can be

Fig. 4. Temporal development of dimensionless solid±liquid

interface position (with and without evaporative cooling), di-

mensionless ¯uid layer liquid±gas interface position, dimen-

sionless ¯uid layer temperature, and dimensionless solidi®ed

region surface temperature (without evaporative cooling) at

90% relative humidity.

Fig. 5. E�ect of relative humidity on the ratio of solidi®ed

thickness with evaporative cooling to solidi®ed thickness with-

out evaporative cooling.

Fig. 3. Temporal development of dimensionless solid±liquid

interface position (with and without evaporative cooling), di-

mensionless ¯uid layer liquid±gas interface position, dimen-

sionless ¯uid layer temperature, and dimensionless solidi®ed

region surface temperature (without evaporative cooling) at 0%

relative humidity (dry air).
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explained in Fig. 6, with a ®xed relative humidity of

50%. The temporal decrease in thickness ratio corre-

sponds to a temporal decrease in mass transfer driving

factor �mf ÿ m1�, which is simply due to the fact that as

the ¯uid layer temperature decreases, the vapor pressure

at the ¯uid layer liquid±gas interface decreases. In fact,

the mass transfer driving factor drops from about

0.01209 initially to approximately 0.0084 just before dry-

out. At dry-out time or freeze time (Fig. 5), the thickness

ratio drops from around 3.07 to about 1.55 as the rel-

ative humidity increases from 50 to 90%. In addition, the

dry-out times for relative humidities of 50%, 60%, 70%,

and 80% are 11.7, 14.3, 18.4, and 25.9, respectively. It

should be recalled from Fig. 4 that at 90% relative hu-

midity, complete solidi®cation is achieved. Therefore,

the transition from dry-out to complete solidi®cation

occurs between 80% and 90% relative humidity.

In Fig. 7, the e�ect of Biot number on the temporal

development of the thickness ratio is illustrated for a

®xed relative humidity of 90%. At early times (as s! 0),

it can be observed that the thickness ratio approaches an

asymptotic value of 2.18 for all representative Biot

numbers. Upon dry-out or complete solidi®cation, the

thickness ratio decreases from 2.06 to 1.55 to 1.22 at

Biot numbers of 0.1, 1, and 10, respectively. For Biot

numbers of 0.1 and 1, the freeze times are, respectively,

sf � 215 and sf � 36.9 while at a Biot number of 10, the

dry-out time is approximately sdry� 7.9. Therefore,

when the relative humidity is ®xed at 90%, the transition

between dry-out and complete solidi®cation occurs be-

tween Biot numbers of 1 and 10. An excellent illustra-

tion of the transition between dry-out and complete

solidi®cation is shown in Fig. 8, which shows the e�ect

of relative humidity on the dry-out or freeze time at Biot

numbers of 1 and 10. It should be noted that the curve

labeled ``sK�0'' corresponds to the dry-out time and the

curve labeled ``sD�1'' corresponds to the freeze time

when a non-zero ¯uid layer thickness is arti®cially

maintained, which allows complete solidi®cation of the

slab. For example, at a relative humidity of 0% (dry air),

if a ®nite ¯uid layer thickness is arti®cially maintained,

then the freeze time would occur at sf � 10.9 instead of

drying out at sdry� 6.165. In the ®gure, it can be ob-

served that at Bi� 1, the transition between dry-out and

Fig. 6. Temporal development of mass transfer driving factor

with solidi®ed thickness ratio and dimensionless ¯uid layer

temperature superimposed.

Fig. 7. E�ect of Biot number on the ratio of solidi®ed thickness

with evaporative cooling to solidi®ed thickness without evap-

orative cooling.

Fig. 8. Comparison of ¯uid layer evaporation time (dry-out)

and material freeze time as a function of relative humidity for

selected Biot numbers.
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complete solidi®cation is shown to occur between rela-

tive humidities of 84 and 86%, which corresponds to the

intersection of the dry-out time curve (sK�0) and the

freeze time curve (sD�1). However, at Bi� 10, there is no

transition and dry-out always occurs, independent of the

relative humidity.

Fig. 9 shows the e�ect of Biot number (up to unity)

on the dry-out time or freeze time for relative humidities

of 50%, 70%, and 90%. As to be expected, increasing the

Biot number decreases the dry-out or freeze time due to

convective enhancement of heat transfer (and mass

transfer due to the analogy between heat and mass

transfer). In the ®gure, a transition is shown to occur at

70% relative humidity, with the transition Biot number

bounded between 0.15 and 0.2. At 90% relative humid-

ity, no transition occurs and complete solidi®cation

takes place throughout the entire Biot number range. On

the other hand, at 50% relative humidity, no transition

occurs and dry-out takes place for all representative Biot

numbers.

6. Summary

A one-dimensional model of a solidifying slab subject

to evaporative cooling at one of its surfaces was devel-

oped. A general semi-analytic solution was presented in

the limit of low Stefan numbers and mass transfer rates.

In developing the semi-analytic solution, an nth order

polynomial was used to express the vapor pressure

function in terms of ¯uid layer temperature. The freezing

of a slab of calcium chloride hexahydrate subject to

evaporative cooling of a thin layer of water into air was

used to illustrate the utility of the model. A limiting case

of isothermal cooling was used to compare the semi-

analytic results to previously published results on the

solidi®cation of a slab subject to an isothermal bound-

ary condition. Results showed the existence of a transi-

tion region, depending upon the relative humidity and

Biot number, where ¯uid layer dry-out time competes

with the solidi®cation time of the slab.
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